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Abstract—In the area of parallelizing compilers, considerable research has been carried out on data dependency analysis,
parallelism extraction, as well as program and data partitioning. However, designing a practical, low complexity scheduling algorithm
without sacrificing performance remains a challenging problem. A variety of heuristics have been proposed to generate efficient
solutions but they take prohibitively long execution times for moderate size or large problems. In this paper, we propose an algorithm
called FASTEST (Fast Assignment and Scheduling of Tasks using an Efficient Search Technique) that has O(e) time complexity,
where e is the number of edges in the task graph. The algorithm first generates an initial solution in a short time and then refines it
by using a simple but robust random neighborhood search. We have also parallelized the search to further lower the time complexity.
We are using the algorithm in a prototype automatic parallelization and scheduling tool which compiles sequential code and
generates parallel code optimized with judicious scheduling. The proposed algorithm is evaluated with several application programs
and outperforms a number of previous algorithms by generating parallelized code with shorter execution times, while taking
dramatically shorter scheduling times. The FASTEST algorithm generates optimal solutions for a majority of the test cases and
close-to-optimal solutions for the rest.

Index Terms—Automatic parallelization, compile-time scheduling, task graphs, multiprocessors, parallel processing, parallel
programming tool, parallel algorithm, random neighborhood search.
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1 INTRODUCTION

CHEDULING the tasks of a parallel program to the proc-
essors is crucial for optimizing performance. Scheduling

can be performed at compile-time if the characteristics of
the parallel program, such as the execution times of the
tasks, amount of communication data, and task dependen-
cies, are known before program execution. For example,
assuming that the loop bounds are known at compile-time,
the parallel loop nest shown in Fig. 1a can be partitioned
into six tasks connected as a directed acyclic graph (DAG), as
shown in Fig. 1b. The DAG can be constructed by applying
various static data dependency analysis [4], [8], [18] and
program partitioning [3], [19], [22] techniques. Further-
more, the nodes and edges of the DAG are associated with
weights, which are generated by using techniques such as
execution profiling and analytical benchmarking [6], [9],
[12] for representing amounts of execution time and com-
munication time, respectively. The tasks can then be sched-
uled to the processors for execution by using a suitable
scheduling algorithm. The objective of scheduling is to
minimize the overall completion time or schedule length of
the parallel program. As the scheduling algorithm is invoked
off-line, this kind of multiprocessor scheduling problem is

commonly referred to as static scheduling [5], [11], [14], [16],
[17], [20], [23].

Static scheduling, except for a few highly simplified
cases, is an NP-complete problem [5], [7]. Thus, heuristic
approaches are generally sought to tackle the problem. Tra-
ditional static scheduling algorithms attempt to minimize
the schedule length through iterative local minimization of
the start times of individual tasks [5]. These algorithms dif-
fer primarily in their methods of selecting a task for start
time minimization. For instance, the Modified Critical Path
(MCP) algorithm [25] constructs a list of tasks before the
scheduling process starts, while the Dynamic Level Sched-
uling (DLS) algorithm [24] dynamically selects tasks during
the scheduling process. However, like most greedy algo-
rithms, these scheduling approaches cannot avoid making a
local decision which may lead to an unnecessarily long final
schedule. Although static scheduling is done at compile-
time and therefore can afford some extra time in generating
a better solution, back-tracking techniques are not em-
ployed to avoid high complexity. Indeed, the time com-
plexity of a scheduling algorithm is an important issue
from a practical perspective because a slow scheduling al-
gorithm is not desirable to be incorporated in a paralleliz-
ing compiler. In this regard, Yang and Gerasoulis [26] pro-
posed some novel techniques for reducing the time com-
plexity of scheduling algorithms. Our objective is to design
a new static scheduling algorithm that has a lower time
complexity and yet produces better solutions.

To meet the conflicting goals of good performance and low
complexity, we employ an effective optimization technique
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known as the random neighborhood search [21]. Simply
put, in a neighborhood search-based algorithm, an initial
solution with moderately good quality is quickly generated.
Then, according to some predefined neighborhood in the
search space, the algorithm probabilistically selects and
tests whether a nearby solution in the search space is better
or not. If the new solution is better, the algorithm adopts it
and starts searching in a new neighborhood; otherwise, the
algorithm tests another solution point. Usually, the algo-
rithm stops after a specified number of search steps has
elapsed or the solution does not improve after a fixed num-
ber of steps. The success of a neighborhood search tech-
nique relies heavily on the construction of the solution
neighborhood. A judiciously constructed neighborhood,
like the one defined in Kernighan and Lin’s graph parti-
tioning algorithm [13] (for undirected graphs) can poten-
tially lead the search to attain a globally optimal solution.

The proposed scheduling algorithm, which is called
FASTEST (Fast Assignment and Scheduling of Tasks using
an Efficient Search Technique), is a linear time algorithm
with O(e) worst-case time complexity, where e is the num-
ber of edges in the task graph. The search is parallelized so
as to further reduce the algorithm’s complexity. In addition
to using randomly generated task graphs, the FASTEST
algorithm is evaluated by applying it in a prototype com-
pile-time parallelization and scheduling tool called CASCH
(Computer-Aided SCHeduling) [1] to several practical ap-
plications on an Intel Paragon. The algorithm outperforms
numerous previous algorithms while the scheduling times
required are dramatically shorter.

The paper is organized as follows: Section 2 describes
the proposed FASTEST algorithm and its design principles.
Section 3 contains the performance results. Section 4 pro-
vides some concluding remarks.

2 THE PROPOSED ALGORITHM

In this section, we present the proposed algorithm and
its design principles. To facilitate understanding the neigh-
borhood search technique, we first restrict the discussion
to the sequential version of the FASTEST algorithm,
which is referred to as simply the FAST algorithm. We
then describe the parallelization technique leading to the
FASTEST algorithm.

2.1 A Solution Neighborhood Formulation
Neighborhood search is an old but effective optimization
technique [13], [21]. The principle of neighborhood search is
to refine an initial solution by searching through the neigh-
borhood of the initial solution point in the solution space.
To apply the neighborhood search technique to the DAG
scheduling problem, a crucial step is to define a neighbor-
hood of the initial solution point (i.e., the initial schedule).
We can arrive at such a neighborhood definition by using
the observation discussed below.

A neighboring point of a schedule in the solution space
can be defined as another schedule which is obtained by
transferring a node from a processor to another processor.
In the DAG scheduling problem, one method of improving
the schedule length is to transfer a blocking-node from one
processor to another. The notion of blocking is simple: A
node is called a blocking-node if removing it from its original
processor can make the succeeding nodes start earlier. In
particular, we are interested in transferring the nodes that
block the critical path1 nodes (CPNs) because the CPNs rep-
resent the more important tasks. However, a high complex-
ity will result if we attempt to exhaustively locate the actual
blocking-nodes on all the processors. Thus, in our ap-
proach, we only generate a list of potential blocking-nodes,
which are the nodes that may block the CPNs. Again, to
maintain a low complexity, the blocking-nodes list is static
and is constructed before the search process starts. A natu-
ral choice of blocking-nodes list is the set including all the
IBNs and OBNs2 (with respect to an initial CP) [16] because
these nodes have the potential to block the CPNs in the
processors. In the schedule refinement phase, the blocking-
nodes list defines the neighborhood that the random search
process will explore. Assuming that the DAG, which has v
nodes and e edges, is to be scheduled to p processors, the
size of such a neighborhood is O(vp) because there are O(v)
blocking-nodes.

2.2 Scheduling Serially
To generate an initial schedule, our technique is based on the
traditional list scheduling approach in which we construct a

1. A critical path (CP) is a path with the maximum sum of node and edge
weights or, simply, the maximum length.

2. An IBN (In-Branch Node) is an ancestor of a CPN but is not a CPN in
itself. An OBN (Out-Branch Node) is a node which is neither a CPN nor an
IBN.

Fig. 1. (a) A parallel program fragment; (b) a DAG representing the program fragment.
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list and schedule the nodes on the list one by one to the
processors. The list is constructed by ordering the nodes
according to the node priorities. The list is static so that the
order of nodes on the list will not change during the sched-
uling process. The reason is that as the objective of our al-
gorithm is to produce a good schedule in O(e) time3, we do
not recompute the node priorities after each scheduling
step while generating the initial schedule. Certainly, if the
schedule length of the initial schedule is optimized, the
subsequent random search process can start at a better so-
lution point and thereby generate a better final schedule.

In the proposed algorithm, we use the CPN-Dominant
list, which gives CPNs higher priorities, as the scheduling
list. Given a DAG of v nodes n n nv1 2, , ,K< A and e directed

edges, each of which is denoted by n ni j,4 9 , the CPN-

Dominant List can be constructed using the following pro-
cedure in O(e) time since each edge is visited only once.

Initial Task Ordering Procedure:

1)� The CPN-Dominant list is initialized to be an empty list.
Make the entry CPN (the one which does not have
any predecessor) be the first node in the list.
Set Position to 2.
Let nx  be the next CPN.

repeat
2)�if nx  has all its parent nodes in the list then
3)� Put nx  at Position in the list and increment Position.
4)�else
5)� Let ny  be the parent node of nx  which is not in the

sequence and has the largest b-level.4 Ties are broken
by choosing the parent with a smaller t-level.
repeat

5)�      If ny  has all its parent nodes in the sequence then

6)�           put ny  at Position in the sequence and increment

    Position.
7)�       else
8)�         Recursively include all the ancestor nodes of

        ny  in the sequence so that the nodes with a

        larger value of b-level are considered first.
9)�      endif

until all the parent nodes of nx  are in the list.
6)� Put nx  at Position in the list.
7)�endif
8)�Make nx  to be the next CPN.
until all the CPNs are in the list.
9)� Append all the OBNs to the sequence in a decreasing
     order of b-level.

We make use of the CPN-Dominant list in a procedure
called InitialSchedule, which has two steps: 1) constructing the
CPN-Dominant list, 2) scheduling the nodes on the list one
after another to the processors. In the InitialSchedule procedure,

3. Throughout the paper, we assume that the DAG is connected and,
hence, we have e = O(v).

4. The b-level of a node is the length (sum of the computation and com-
munication costs) of the longest path from the node to an exit node. The
t-level of a node is the length of the longest path from an entry node to this
node (excluding the cost of this node) [16], [26].

to avoid incurring high complexity, we do not search for the
earliest slot on a processor but simply schedule a node to the
ready time of a processor. Initially, the ready time of all avail-
able processors is zero. After a node is scheduled to a proces-
sor, the ready time of that processor is updated to the finish
time of the last node. By doing so, a node is scheduled to a
processor that allows the earliest start time, which is deter-
mined by checking the processor’s ready time with the
node’s data arrival time (DAT). The DAT of a node can be
computed by taking the maximum value among the message
arrival times across the parent nodes. If the parent is sched-
uled to the same processor as the node, the message arrival
time is simply the parent’s finish time because the local
communication cost is assumed to be zero; otherwise, it is
equal to the parent’s finish time (now on a remote processor)
plus the communication cost of the edge. Not all processors
need to be checked in this process. Instead, we can examine
the processors accommodating the parent nodes together
with an empty processor (if any). The time complexity of
InitialSchedule is derived as follows: The first step takes O(e)
time. The cumulative time complexity of the second step is
also O(e) because each edge is visited once. Thus, the overall
time complexity of InitialSchedule is O(e).

To analyze the performance of InitialSchedule, we focus
on a basic graph structure called the fork-set, as shown in
Fig. 2a. This basic structure is the building block of more
general graph structures and, thus, an algorithm’s perform-
ance on such a structure can give some insight about its
general performance. In the following, we use w ni2 7  to de-

note the weight of a node ni  and c n nx y,4 9 to denote the

weight of an edge n nx y,4 9.
We first analyze some properties of the fork set.

Throughout the analysis, we assume that the target proces-
sor network consists of p fully connected processing ele-
ments (PEs). Without loss of generality, assume that for the
fork structure, we have:

c n n w n c n n w n c n n w nx x x v v, , , .1 1 2 22 7 2 7 2 7 2 7 2 7 2 7+ ≥ + ≥ ≥ +K

The optimal schedule length is then equal to:

max w n w n w n c n n w nx i x x j j
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The optimal schedule for the fork set is shown in Fig. 2b.
From the above expressions, it is clear that an algorithm has
to be able to recognize the longest path in the graph in order
to generate optimal schedules. Thus, algorithms which con-
sider only b-level or only t-level may not guarantee optimal
solutions. To make proper scheduling decisions, an algo-
rithm has to properly examine both b-level and t-level.
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From the above analysis, it is easy to see that the initial
schedule generated based on the CPN-Dominant list will be
optimal if:

c n n c n n c n nx x x v, , , ,1 22 7 2 7 2 7= = =K

which in turn implies that:

w n w n w nv1 22 7 2 7 2 7≥ ≥ ≥K .

Thus, the nodes will be arranged according to their ordi-
nal order in the CPN-Dominant list because the nodes are
considered in descending order of their b-levels which are just
their node weights in the case of a fork set. The initial sched-
ule will then be the optimal schedule as shown in Fig. 2b
since the FASTEST algorithm minimizes the start time of
every node in the CPN-Dominant list.

Based on the above analysis, we can expect that the
FASTEST algorithm will be able to generate good initial
schedules for graphs with relatively uniform edge weights.
Such scenarios are found in many practical numerical ap-
plications in which the tasks communicate by forwarding
partial results in fixed sized arrays.

Given the procedure InitialSchedule, we present the se-
quential version of our neighborhood search algorithm—the
FAST algorithm. In order to avoid the search being trapped
in a local optimal solution, we incorporate a probabilistic
jump procedure in the algorithm. In the FAST algorithm out-
lined below, we use SL to denote the schedule length.

The FAST Algorithm:

1)�NewSchedule = InitialSchedule
2)�Construct the blocking-nodes list which contains all

the IBNs and OBNs;

3)�BestSL = infinity; searchcount = 0;
4)� repeat
5)� searchstep = 0; counter = 0;
6)� do { /* neighborhood search */
7)�      Pick a node ni  randomly from the blocking-

     nodes list;
8)�      Pick a processor P randomly;
9)�      Transfer ni  to P;
10)�      If schedule length does not improve, transfer ni

     back to its original processor and increment
     counter; otherwise, set counter to 0;

11)� } while (searchstep++ < MAXSTEP and counter <
      MARGIN);

12)� if BestSL > SL(NewSchedule) then
13)�      BestSchedule = NewSchedule
14)�      BestSL = SL(NewSchedule)
15)� endif
16)� NewSchedule = Randomly pick a node from the CP

      and transfer it to another processor; /* probabilistic
 jump */

17)� until (searchcount++ > MAXCOUNT);

The total number of search-steps is MAXSTEP × MAX-
COUNT. While the number of search steps in each iteration
is bounded by MAXSTEP, the algorithm will also terminate
searching and proceed to the step of probabilistic jump if
the solution does not improve within a specified number of
steps, denoted as MARGIN. This is done in order to further
enhance the expected efficiency of the algorithm. The rea-
son for making MAXSTEP, MARGIN, and MAXCOUNT as
constants is two-fold. First, the prime objective in the de-
sign of the algorithm is to keep the time complexity low
even when the size of the input graph is large. Second, the
major strength of the FAST algorithm lies in its ability to
generate a good initial solution by using the CPN-
Dominant List. As such, the likelihood of improving the
initial solution dramatically by using a large number of
search steps is not high. Thus, we fix MARGIN to be 2,
MAXSTEP to be 8, and MAXCOUNT to be 64 based on our
experimental results which will be described in detail in
Section 3.1.

The time complexity of the sequential FAST algorithm
is derived as follows: As discussed earlier, the procedure
InitialSchedule takes O e0 5 time. The blocking-nodes list can
be constructed in O v0 5 time as the IBNs and OBNs are
already identified in the procedure InitialSchedule. In the
main loop, the node transferring step takes O e0 5 time since
we have to revisit all the edges once in the worst case after
transferring the node to a processor. Thus, the overall time
complexity of the sequential algorithm is O e0 5.

To illustrate the scheduling mechanism of the FAST algo-
rithm, consider the small example task graph shown in Fig. 3a.
The CPN-Dominant List of the DAG is

n n n n n n n n n1 3 2 7 6 5 4 8 9, , , , , , , ,< A .

Note that n8  is considered after n6  because the latter has a
smaller value of t-level. Using the CPN-Dominant List, the ini-
tial schedule produced by InitialSchedule is shown in Fig. 3b.
The blocking-nodes list of the DAG is n n n n n n2 3 4 5 6 8, , , , ,< A .

Fig. 2. (a) A fork set; and (b) its optimal schedule.
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We can see that the node n6  blocks the CPN n9 . In the random
search process, it is highly probable that n6  is selected for
transferring. Suppose it is transferred from PE 1 to PE 3. The
resulting schedule is shown in Fig. 3c, where the final schedule
length is shortened even though the start times of n5  and n8

are increased.

2.3 Parallel Probabilistic Search
The parallelization of the neighborhood search is based on
partitioning of the blocking-nodes set into q subsets, where q
is the number of available physical processing elements (PPEs),
such as the processors in an Intel Paragon, on which the
FASTEST algorithm is executed. Each PPE then performs a
neighborhood search using its own blocking-nodes subset.
The PPEs communicate periodically to exchange the best
solution found thus far and start new search steps based on
the best solution. Based on our experimental results (see Sec-
tion 3.4), the period of communication for the PPEs is set to
be T number of search-steps, which follows an exponentially
decreasing sequence: initially τ

2 , then τ
4 , τ

8 , and so on,

where τ = MAXCOUNT
q . The rationale is that at early stages

of the search, exploration is more important than exploitation.

The PPEs should, therefore, work independently for a longer
period of time. However, at final stages of the search, ex-
ploitation is more important for refining the solutions and,
thus, the PPEs should communicate more frequently. The
FASTEST algorithm is outlined below.

The FASTEST Algorithm:

1)� if myPPE == master then
2)� Determine the initial schedule;
3)� Construct the blocking-nodes set;
4)� Partition the blocking-nodes set into q subsets

which are ordered topologically;
5)�endif
6)�Every PPE receives a blocking-nodes subset and the

initial schedule;
7)� repeat
8)� i = 2
9)� repeat /* search */
10)�       Run FAST to search for a better schedule;

11)� until searchcount > ×
MAXCOUNT

i q ;

12)� Exchange the best solution;

13)�  until total searchcount = MAXCOUNT
q

Fig. 3. (a) A task graph; (b) The schedule generated by InitialSchedule; (c) The schedule generated by the random neighborhood search.
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In the FASTEST algorithm, one PPE is designated as the
master, which is responsible for preprocessing work in-
cluding construction of an initial schedule, the blocking-
nodes set, and the subsets.

Since the total number of search-steps is evenly distrib-
uted to the PPEs, the FASTEST algorithm should have lin-
ear speedup over the sequential FAST algorithm if commu-
nication takes negligible time. However, inter-PPE commu-
nication inevitably incurs an overhead and, thus, the ideal
case of linear speedup is not achievable. But the solution
quality of FASTEST can be better than that of the sequential
FAST algorithm. This is because the PPEs explore different
parts of the search space simultaneously through different
neighborhoods induced by the partitions of the blocking-
nodes set. The sequential FAST algorithm, on the other
hand, has to handle a much larger neighborhood for the
same problem size.

To perform a simple probabilistic analysis on the search
mechanism of the FASTEST algorithm, suppose there is a CPN
blocked by a certain blocking node in the list. That is, the CPN
can be scheduled to start earlier on its processor if the blocking
node is transferred to some other processors. The probability
that the FASTEST algorithm will select this blocking node for

transferal is q

v vcp−4 9
 (the factor q is due to the partitioning of the

blocking node list among q PPEs and vcp  is the number of

CPNs) and the probability that a suitable processor (there may
not be only one) is selected for accommodating the blocking
node is at least 1

p . Thus, the probability that the FASTEST al-

gorithm will successfully improve the schedule is q

p v vcp−4 9
which increases as q. Thus, searching different neighborhoods
in parallel by partitioning the blocking node list can poten-
tially enhance the chance of improving the schedule.

3 PERFORMANCE RESULTS

The performance results of the proposed algorithm pre-
sented in this section serve a number of objectives. First,
we examine the effects of the number of search steps.
Second, we illustrate the practicality of the proposed
algorithm in terms of its applicability in a real schedul-
ing environment. To serve this purpose, we compared

the FAST algorithm with the DSC (Dominant Sequence
Clustering) [26], MD (Mobility Directed) [25], ETF (Earli-
est Task First) [10], and DLS (Dynamic Level Scheduling)
[24] algorithms using a prototype software tool for pro-
gram parallelization and scheduling. Third, we investi-
gate the effects of different communication strategies
used by the FASTEST algorithm. This is followed by a
comparison of the schedules generated by the FASTEST
algorithm with the optimal solutions. The results of us-
ing only the InitialSchedule procedure are also compared.
Finally, to illustrate the scalability of the algorithms, we
present the results of applying the algorithms to very
large task graphs.

3.1 Number of Search Steps
We performed experiments to determine suitable values
for the constants MAXSTEP and MAXCOUNT which gov-
ern the number of search steps and probabilistic jumps;
for simplicity, we tested the FAST algorithm only. We gen-
erated 10 random task graphs with 1,000 nodes each (the
method of generating these random graphs is elaborated
in Section 3.5) and then tested the FAST algorithm with
different values of MAXSTEP and MAXCOUNT. These
experiments were performed without using MARGIN. In
one set of experiments we varied MAXSTEP from 2 to 64
and fixed MAXCOUNT to be 256 which is large enough to
isolate its effect. In the other set of experiments we varied
MAXCOUNT from 16 to 256 and fixed MAXSTEP to be 64.
The results of these experiments are shown in Fig. 4. Each
point in the plots is the average normalized schedule
lengths (NSLs) of 10 random graphs. The NSL of a graph
is defined as the ratio of the schedule length to the sum of
computation costs on the CP. As can be seen from the
plots, the average NSLs did not improve considerably
when we increased MAXSTEP beyond 8 and MAX-
COUNT beyond 64. Thus, we fixed MAXSTEP to be 8 and
MAXCOUNT to be 64 throughout the subsequent experi-
ments. We set MAXCOUNT as 64 instead of 128 because
the former value is a reasonable compromise between per-
formance and time complexity.

Notice that the number of search steps for each neigh-
borhood is bounded by MAXSTEP, for which a suitable
value was found to be quite small. This indicates that the
solution usually does not improve after several search

Fig. 4. Average normalized schedule lengths of the FAST algorithm for random task graphs with 1,000 nodes using various values of MAXSTEP
and MAXCOUNT.
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steps. Furthermore, from these experiments, we also ob-
served that for most of the cases where the solution could
not be improved within the first few search steps, addi-
tional searching steps within the current neighborhood
yielded no further improvement. Thus, we use MARGIN,
which is fixed to be 2, to detect whether a local optimum
point is reached and to force the search to explore another
neighborhood swiftly.

3.2 The CASCH Tool
We performed experiments using the CASCH (Computer-
Aided SCHeduling) tool [1]. The system organization of
the CASCH tool is shown in Fig. 5. It generates a task
graph from a sequential program, uses a scheduling algo-
rithm to perform scheduling, and then generates the par-
allel code in a scheduled form for an Intel Paragon. The
timings for the nodes and edges on the DAG are assigned
through a timing database which was obtained through
profiling of the basic operations. CASCH also provides a
graphical user interface to interactively run and test vari-
ous algorithms, including the ones discussed in this paper.
In addition to measuring the schedule length through a
Gantt chart, we measure the running time of the sched-
uled code on the Paragon. Various scheduling algorithms,
therefore, can be more accurately tested and compared
through CASCH using real applications on an actual ma-
chine. It should be noted that after the task graph is gen-
erated from the input application on the host workstation,
it can be uploaded to the Paragon for scheduling because
the FASTEST algorithm can harness multiple processors to
accomplish the scheduling process. The resulting symbolic
schedule is then downloaded back to the host workstation
for parallel code generation. The reader is referred to [1]
for details about the CASCH tool.

3.3 Parallel Applications
In our first experiment, we tested the FAST algorithm with
the DAGs generated from three practical applications:
Gaussian elimination, Laplace equation solver, and Fast
Fourier Transform (FFT) [1]. The Gaussian elimination and
Laplace equation solver applications operate on matrices.
Thus, the number of nodes in the DAGs generated from

these applications is related to the matrix dimension N and

is about O N 24 9 . On the other hand, the FFT application

accepts the number of points as input. We examined the
performance in three aspects: application execution time,
number of processors used, and the scheduling algorithm
running time.

Using the CASCH tool on a SUN Sparc workstation, we
compared the FAST algorithm with four sequential sched-
uling algorithms: the DSC (Dominant Sequence Clustering)
[26], MD (Mobility Directed) [25], ETF (Earliest Task First)
[10], and DLS (Dynamic Level Scheduling) [24] algorithms.
The DSC algorithm works by dynamically tracking the
critical path nodes for scheduling using a low complexity
technique. The time complexity of the DSC algorithm is
O e v v+0 52 7log . The MD algorithm is also based on a dy-
namic strategy to schedule the critical path nodes as early
as possible. The time complexity of the MD algorithms is

O v34 9 . The ETF algorithm, at each scheduling step, sched-

ules a task that can start at the earliest time among all
ready tasks; the algorithm uses the static level to break

ties. The time complexity of the ETF algorithm is O pv24 9 .
The DLS algorithm schedules the task with the highest
dynamic level, defined as the difference between a task’s
static level and the earliest start time. The time complexity

of the DLS algorithm is also O pv24 9 . For a detailed discus-

sion on the properties of these algorithms, the reader is
referred to [16].

The results for Gaussian elimination are shown in Table 1.
In Table 1a, we normalized the application execution times
obtained through all the algorithms with respect to those
obtained through the FAST algorithm. It was found that
the programs scheduled by the FAST algorithm are up to
15 percent faster than the other algorithms. Note that the
results of the DSC algorithm for matrix dimensions 16 and
32 were not available because the DSC used more than the
available Paragon processors in scheduling the parallel
program. This can be explicated by the fact that the DSC
algorithm uses O v0 5 processors. Concerning the number
of processors used, the FAST, ETF, and DLS algorithms
used about the same number of processors, as shown in
Table 1b. The scheduling times of all the algorithms are
shown in Table 1c, indicating that the DSC algorithm was
the fastest algorithm with the proposed FAST algorithm
very close to it. On the other hand, the ETF and DLS algo-
rithms running times are relatively large, but are still
shorter than those of the MD algorithm. This is because
the MD algorithm has a higher time complexity than the
other algorithms.

The results for the Laplace equation solver are shown in
Table 2, from which we can see that the percentage improve-
ments of the FAST algorithm over the other algorithms is up to
25 percent. Regarding the number of processors used, the
FAST, MD, ETF, and DLS algorithms yield a similar perform-
ance, while the DSC algorithm again uses more processors
than the other algorithms. For the scheduling times, the FAST
algorithm is the fastest among all the algorithms. The MD al-
gorithm is again slower than the other algorithms.

Fig. 5. The organization of the CASCH tool.
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The results for the FFT are shown in Table 3. The FAST
algorithm is again better than all the other four algorithms
in terms of the application execution times and scheduling
times. A plausible explanation for the consistent better
performance of the FAST algorithm is that the numerical
applications we used for the above experiments have
highly regular graph structures [15]. For instance, most
graphs have very regular edge weights, which is a major

reason for superior performance of the initial schedule
construction step in the FAST algorithm, as we have
shown in Section 2.2.

3.4 Effect of Communication Strategy
In order to determine the most suitable periodic inter-
PPE communication strategy for the FASTEST algorithm,
we performed experiments using three different methods.

TABLE 1
NORMALIZED EXECUTION TIMES, NUMBER OF PROCESSORS USED, AND SCHEDULING ALGORITHM

RUNNING TIMES FOR THE GAUSSIAN ELIMINATION FOR ALL THE SCHEDULING ALGORITHMS

(a) Normalized execution times of Gaussian elimination on the Intel Paragon; (b) Number of processors used for the Gaussian elimination; (c) Scheduling times
(sec) on a SPARC Station 2 for the Gaussian elimination.

TABLE 2
NORMALIZED EXECUTION TIMES, NUMBER OF PROCESSORS USED, AND SCHEDULING ALGORITHM

RUNNING TIMES FOR THE LAPLACE EQUATION SOLVER FOR ALL THE SCHEDULING ALGORITHMS

(a) Normalized execution times of Laplace equation solver on the Intel Paragon; (b) Number of processors used for the Laplace equation solver; (c) Scheduling
times (sec) on a SPARC Station 2 for the Laplace equation solver.
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We used four PPEs to schedule 10 different 500-node
random task graph for which optimal schedules are
known (the method of generating such random graphs
are described in detail in Section 3.5). In the first method,
PPEs communicate with a constant period of one search
step. That is, with MAXCOUNT equal to 64 and 4 PPEs,
PPEs communicate 16 times throughout the search proc-
ess. In the second method, PPEs communicate only
twice: when half of the MAXCOUNT search steps have
elapsed, and when the search process ends. In the third
method, PPEs communicate periodically with exponen-
tially decreasing periods. The results of the three meth-
ods are shown in Table 4. The average percentage devia-
tion from optimal solutions is the best when frequent
communication (method 1) is used, but the running time
required is the longest. Infrequent communication is the
worst in terms of solution quality even though it incurs
less communication overhead. The exponentially de-
creasing schedule of communication is fast and its solu-
tion quality is slightly worse than the first method. In-
deed, when we examined the variations in schedule
lengths, we found that using the third method the PPEs
quickly reached similar quality schedules during the last
few search steps. But for first the method, there was
some kind of premature convergence to some not so
good schedules. Based on these results, we incorporated

the exponentially decreasing communication schedule
into the FASTEST algorithm.

3.5 Comparison Against Optimal Solutions
In this section, we present the performance results of the
FASTEST algorithm. The objective is to investigate the solu-
tion quality of the algorithm by applying it to two different
suites of random task graphs for which optimal solutions
are known. The first suite of random task graphs consists of
three sets of graphs with different values of communication-
to-computation ratio (CCR), which is defined as the average
edge weight divided by the average node weight in the
DAG. In our experiments, three CCRs were used: 0.1, 1.0,
and 10.0. Each set consists of graphs in which the number
of nodes vary from 10 to 32 with increments of 2, thus to-
taling 12 graphs per set. The graphs within the same set
have the same value of CCR. The graphs were randomly
generated as follows: First, the computation cost of each
node in the graph was randomly selected from a uniform
distribution with mean equal to 40 (minimum = 2 and
maximum = 78). Beginning with the first node, a random
number indicating the number of children was chosen from
a uniform distribution with mean equal to v

10 , thus the con-
nectivity of the graph increases with the size of the graph.

The communication cost of each edge was also randomly
selected from a uniform distribution with mean equal to 40
times the specified value of CCR. Hereafter, this suite of
graphs is designated type-1 random task graphs. To obtain
optimal solutions for the task graphs, we applied a parallel
A* algorithm [2] to the graphs. Since generating optimal
solutions for arbitrarily structured task graphs takes expo-
nential time, it is not feasible to obtain optimal solutions for
larger graphs. However, to investigate the scalability of the
FASTEST algorithm, it is desirable to test it with larger task
graphs for which optimal solutions are known. To resolve

TABLE 4
AVERAGE PERCENTAGE DEVIATIONS FROM OPTIMAL SCHEDULE

LENGTHS AND THE RUNNING TIMES FOR SCHEDULING 10
500-NODE RANDOM TASK GRAPHS USING FOUR PPES

TABLE 3
NORMALIZED EXECUTION TIMES, NUMBER OF PROCESSORS USED, AND SCHEDULING ALGORITHM

RUNNING TIMES FOR FFT FOR ALL THE SCHEDULING ALGORITHMS

(a) Normalized execution times of FFT on the Intel Paragon; (b) Number of processors used for the FFT; (c) Scheduling times (sec) on a SPARC Station 2 for FFT.
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this problem, we employ a method to generate task graphs
with given optimal schedule lengths and number of proces-
sors used in the optimal schedules.

The method of generating task graphs with known optimal
schedules is as follows: Suppose that the optimal schedule
length of a graph and the number of processors used are speci-
fied as SLopt  and p, respectively. For each PE i, we randomly

generate a number xi  from a uniform distribution with mean
v
p . The time interval between 0 and SLopt  of PE i is then ran-

domly partitioned into xi  sections. Each section represents the
execution span of one task, thus, xi  tasks are “scheduled” to
PE i with no idle time slot. In this manner, v tasks are gener-
ated so that every processor has the same schedule length. To
generate an edge, two tasks na  and nb  are randomly chosen
such that FT n ST na b2 7 2 7< .5 The edge is made to emerge from

na  to nb . As to the edge weight, there are two cases to con-
sider: 1) the two tasks are scheduled to different processors,
and 2) the two tasks are scheduled to the same processor. In
the first case, the edge weight is randomly chosen from a uni-
form distribution with maximum equal to ST n FT nb a2 7 2 73 8−
(the mean is adjusted according to the given CCR value). In
the second case, the edge weight can be an arbitrary positive
integer because the edge does not affect the start and finish
times of the tasks which are scheduled to the same processor.
We randomly chose the edge weight for this case according to
the given CCR value. Using this method, we generated three
sets of task graphs with three CCRs: 0.1, 1.0, and 10.0. Each
set consists of graphs in which the number of nodes vary
from 50 to 500 in increments of 50; thus, each set contains 10
graphs. The graphs within the same set have the same
value of CCR. Hereafter, we call this suite of graphs the type-2
random task graphs.

The results of applying the FASTEST algorithm on these
two suite of random task graphs using 1, 2, 4, 8, and 16 PPEs
are included in Table 5. Using 1 PPE means that the algorithm
used is the sequential FAST algorithm. As graph size does not
show any significant impact, we computed the average per-
centage deviations (in schedule length) from the optimal solu-
tions. Furthermore, the number of optimal solutions generated
are also shown (in brackets following the percentage devia-
tions). As can be seen from Table 5a, the FASTEST algorithm
generated a significant number of optimal solutions and the
percentage deviations were also small when optimal solutions
were not produced. We also observe that the parallelized ran-
dom neighborhood search process indeed improved the initial
schedules considerably in most cases. One important observa-
tion is that the deviations from optimal did not vary much
with increasing number of PPEs used. One explanation for this
phenomenon is that the final solutions of such cases can be
reached within a few transferal of blocking-nodes. Another
observation is that when 16 PPEs were used, the deviations in
general increased. This is presumably due to the small sizes of
blocking-node subsets which restrict the diversity of the ran-
dom search. It should be noted that for the small type-1
graphs, the blocking-nodes subsets of the PPEs were not dis-
joint so as to make each subset contain at least two nodes.

5. ST and FT denote start time and finish time, respectively.

Table 5b shows the results of the FASTEST algorithm for
the type-2 random task graphs. For these much larger
graphs, the FASTEST algorithm generated fewer optimal
solutions. However, an encouraging observation is that the
percentage deviations were still small. Indeed, the worst
average deviation was only about 37 percent. One interest-
ing observation is that in some cases, using more PPEs im-
proved the schedule lengths. This observation is consistent
with our analysis presented in Section 2.3, which shows
that parallelization may potentially improve the solution
quality. This is due to the partitioning of the search neigh-
borhood which lets the random search to explore different
regions of the search space simultaneously, thereby in-
creasing the likelihood of getting better solutions.

The speedups of the FASTEST algorithm are shown in
Fig. 6. We can see that the speedups are almost linear. Also,
the speedups for type-2 task graphs are considerably
higher. The linear speedup of the FASTEST algorithm is
because of the following reasons. As noted in Section 2, the
sequential execution time of the FASTEST algorithm (that
is, the time required to execute the FASTEST algorithm us-
ing only one PPE), denoted by tseq , is given by:

t t ktseq list sch= + ,

where tlist  is the time required to construct the initial sched-
ule using the CPN-Dominant list, k is the total number of
random neighborhood search steps (i.e., k = MAXCOUNT ×
MAXSTEP), and tsch  is the time required to perform a list
scheduling of the graph. Note that we only include the
running time of the two dominant phases of the FASTEST
algorithm. Moreover, it should be noted that both tlist  and
tsch  are O e0 5.

TABLE 5
RESULTS OF THE FASTEST ALGORITHM COMPARED

AGAINST OPTIMAL SOLUTIONS

Percentage deviation and number of optimal solutions for (a) type-1 random
task graphs (12 graphs); and (b) type-2 random task graphs (10 graphs).
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On the other hand, the running time of the FASTEST al-
gorithm using q PPEs, denoted by tpar , is given by:

t t
k
q t

k
q tpar list sch comm= + +

�
��

�
��log ,

where tcomm  is the time required for a inter-PPE communi-
cation phase which occurs log k

q  times using the communi-

cation schedule with exponentially decreasing periods (no-
tice that the logarithm is of base 2).

Given tseq  and tpar , the speedup of the FASTEST algo-

rithm Sq  is approximately given by:

S
t
t

t kt

t
k
q t

k
q t

q
seq

par

list sch

list sch comm

= =
+

+ +
�
��

�
��log

.

We performed some experiments using the type-2 ran-
dom graphs and found that tlist  is approximately equal to
tsch  (see Fig. 7). We then have:

S
k

k
q

k
q

t
t

q
comm

sch

=
+

+ +
�
��

�
��
�
��

�
��

1

1 log
.

The speedup expression implies that the FASTEST algo-
rithm can attain a linear speedup if k is large relative to q
and tcomm  is small relative to tsch . However, as mentioned in
Section 2.2, the value of k is fixed to be 8 64 512× =  (recall
that MAXSTEP = 8 and MAXCOUNT = 64). In addition, we
do not expect tcomm  to be significantly smaller than tsch  on
most coarse-grain parallel machines, including the Intel
Paragon, IBM SP-2 or CM-5. It is because tcomm  entails a
broadcasting of a list of size v, which constitutes the best
schedule. Thus, in practice, the speedup of the FASTEST
algorithm will be less than linear. Nevertheless, it is inter-
esting to note the approximate speedup values of the

FASTEST algorithm with different values of t
t
comm

sch
, as shown

in Table 6. The speedups are computed using k = 512 and
q = 2, 4, 8, 16.

From Table 6, we observe that the speedups show a
larger deviation from linear as the number of PPEs used is
larger. Moreover, the speedups are critically affected by the
communication time to scheduling time ratio. Thus, as the
inter-PPE communication for larger task graphs is not a
significant overhead, the speedups for type-2 graphs are
higher than that for type-1 graphs.

3.6 Results for Very Large DAGs
To test the scalability and robustness of the parallel FASTEST
algorithm, we performed experiments with very large DAGs,
which may be difficult to handle by the FAST algorithm.
These DAGs include a 10,728-node Gaussian elimination
graph, a 10,000-node Laplace equation solver graph, a
12,287-node FFT graph, and a 10,000-node random graph.
For these graphs we simply measured the schedule length
produced by the DLS, DSC, ETF, and FASTEST algorithms

Fig. 6. Speedups of the FASTEST algorithm: (a) type-1 random graphs; (b) type-2 random graphs.

Fig. 7. The ratio of tsch  to tlist  using the type-2 random graphs.

TABLE 6
APPROXIMATE SPEEDUPS OF THE FASTEST ALGORITHM
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using the Paragon. The FASTEST algorithm used 16 PPEs,
while the other algorithms used one PPE.

The schedule lengths for the large DAGs, normalized
with respect to that of the FASTEST algorithm, are shown in
Table 7a. Note that the MD algorithm is not included in the
comparison because it took more than 8 hours to produce a
schedule for a 2,000-node DAG. The FASTEST algorithm
outperformed all the algorithms in these test cases, with its
percentage improvement ranging from 8 percent to 23 per-
cent over the other algorithms. Concerning the scheduling
times, Table 7b indicates that the ETF and DLS algorithms
are considerably slower than the FASTEST and DSC algo-
rithms, while the FASTEST algorithm outperforms the DSC
algorithm both in terms of solution quality and complexity.
These results with large DAGs indeed provide further evi-
dence to the claim that the FASTEST algorithm is suitable
for finding high quality schedules for large DAGs.

4 CONCLUDING REMARKS

In this paper, we have presented a low complexity algorithm
to meet the conflicting goals of high performance and low
time complexity for the compile-time multiprocessor sched-
uling problem. Based on a simple but robust technique, the
FASTEST algorithm first generates an initial schedule and
then refines it in parallel using probabilistic search.

We have compared the proposed algorithm with a num-
ber of well-known algorithms using both real applications
and randomly generated task graphs. The results presented
in this paper and the comparison of 14 algorithms in [1],
[15] indicate that the FASTEST algorithm is better than
these existing algorithms in terms of both solution quality
and complexity. The algorithm generates good solutions
within a short period of time for practical problem sizes
which are too large to be efficiently handled by existing
scheduling heuristics. The FASTEST algorithm has been
incorporated as a core module in our automatic paralleliza-
tion tool called CASCH for many numerical applications.

An interesting observation about the FASTEST algorithm
is that parallelization can sometimes improve solution
quality. This is due to the partitioning of the blocking-nodes
set, which implies a partitioning of the search neighbor-
hood that causes the algorithm to explore the search space
simultaneously, thereby enhancing the likelihood of getting
better solutions. Further research is needed on improved
parallelization of search.
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